New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices

نویسندگان

  • Carl Bracken
  • Gary McGuire
  • Harold N. Ward
چکیده

Using Hadamard matrices and mutually orthogonal Latin squares, we construct two new quasi-symmetric designs, with parameters 2 − (66, 30, 29) and 2− (78, 36, 30). These are the first examples of quasisymmetric designs with these parameters. The parameters belong to the families 2− (2u2−u, u2−u, u2−u−1) and 2− (2u2 +u, u2, u2−u) which are related to Hadamard parameters. The designs correspond to new codes meeting the Grey-Rankin bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New construction of mutually unbiased bases in square dimensions

We show that k = w + 2 mutually unbiased bases can be constructed in any square dimension d = s provided that there are w mutually orthogonal Latin squares of order s. The construction combines the design-theoretic objects (k, s)-nets (which can be constructed from w mutually orthogonal Latin squares of order s and vice versa) and generalized Hadamard matrices of size s. Using known lower bound...

متن کامل

ON DESIGNS CONSTRUCTED FROM HADAMARD MATRICES SHOAIB UD DIN and V. C. MAVRON

There is a well-known correspondence between symmetric 2-(4ju— 1,2/z — 1,/z — 1) designs and Hadamard matrices of order 4^. It is not so well known that there is a natural correspondence between Hadamard matrices of order 2\x and affine l-(4ju, 2^, 2(i) designs whose duals are also affine. Such a design is denoted by H^fi) in this paper. Under this natural correspondence, two H^fi) designs are ...

متن کامل

Classification of Small Class Association Schemes Coming from Certain Combinatorial Objects Table of Contents

We explore twoor three-class association schemes. We study aspects of the structure of the relation graphs in association schemes which are not easily revealed by their parameters and spectra. The purpose is to develop some combinatorial methods to characterize the graphs and classify the association schemes, and also to delve deeply into several specific classification problems. We work with s...

متن کامل

Constructing Mutually Unbiased Bases from Quantum Latin Squares

We introduce orthogonal quantum Latin squares, which restrict to traditional orthogonal Latin squares, and investigate their application in quantum information science. We use quantum Latin squares to build maximally entangled bases, and show how mutually unbiased maximally entangled bases can be constructed in square dimension from orthogonal quantum Latin squares. We also compare our construc...

متن کامل

New orthogonal designs from weighing matrices

In this paper we show the existence of new orthogonal designs, based on a number of new weighing matrices of order 2n and weights 2n − 5 and 2n−9 constructed from two circulants. These new weighing matrices were constructed recently by establishing various patterns on the locations of the zeros in a potential solution, in conjunction with the power spectral density criterion. We also demonstrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2006